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Neutron stars

I Neutron star formed at the end of the “life” of an
intermediate-mass star (supernova)

I M ∼ 1− 2 M� in a radius of R ∼ 10− 15 km
→ average density ∼ 5× 1014 g/cm3

(∼ 2× nuclear matter saturation density)

I Cools down rapidly by neutrino emission
within ∼ 1 month: T . 109 K ∼ 100 keV

I Internal structure of a neutron star:

outer crust: Coulomb lattice of neutron rich
nuclei in a degenerate electron gas

inner crust: unbound neutrons form a
neutron gas between the nuclei

outer core: homogeneous matter (n, p, e−)

inner core: new degrees of freedom:
hyperons? quark matter?

RCW103 [Chandra X-ray telescope]

~10 km

1−2 km



Role of neutron pairing in neutron stars

I Outer core (nB & 0.08 fm−3): triplet pairing (3P2 −3F2 channel)

I Inner crust (10−3 fm−3 . nB . 0.08 fm−3): singlet pairing (1S0 channel)

→ subject of this talk

I first approximation:
treat the neutron gas in the
inner crust as uniform
neutron matter

I Value of the gap ∆ in the
inner crust strongly affects
the cooling curve
[Fortin et al., PRC 82, 065804 (2010)]
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I Superfluidity of neutron gas also responsible for ’glitches’ (sudden changes
in pulsar rotation frequency)



Reminder: BEC-BCS crossover in ultracold atoms

I consider unpolarized Fermionic atoms with two spin states ↑, ↓

I low temperature (→ low energy): contact interaction (R = 0)

I scattering length a can be tuned
(Feshbach resonance)

I on resonance: unitary limit a→∞

I molecules ↔ fermionic atoms

I at zero temperature:
crossover from BEC (molecules)
to BCS superfluid (Cooper pairs) −1/k  a

T  /EFc

BEC:

(a<0)(a>0)

T  ~n    ~Ec
2/3

F

F

BCS:

c F πT  ~E  exp(  /2k  a)F

I Nozières-Schmitt-Rink (NSR) theory includes non-condensed pairs above Tc

→ correctly interpolates between BEC and BCS limits

I At unitarity (1/kFa = 0):
BCS NSR exp.

Tc/EF 0.5 0.22 0.17



BEC-BCS crossover in neutron matter?

I Neutron-neutron 1S0 scattering length a = −18 fm
much larger than range of interaction (R ∼ 1 fm)

I At low density, one can simultaneously satisfy kFR � 1 and kF |a| � 1

→ close to unitary limit: kFR → 0 and kF |a| → ∞

I At higher density: pairing gets weaker → BCS regime

I No nn bound state → BEC side of crossover cannot be realized

I NSR correction to Tc/EF should be important at low density



T matrix with low-momentum interaction Vlow-k

I Vlow-k : low-momentum interaction generated from a realistic NN interaction by
renormalization group methods (cutoff Λ)

I difficulty: numerical matrix elements V (q, q′), not separable

I T matrix: +=Γ ΓV(q,q’)

Γ(K , q, q′, ω) = V (q, q′) +
2

π

∫
dq′′q′′ 2V (q, q′′)Ḡ

(2)
0 (K , q′′, ω)Γ(K , q′′, q′, ω)

Ḡ
(2)
0 (K , q, ω) = angle average of G

(2)
0 =

1− f (
~K
2

+ ~q)− f (
~K
2
− ~q)

ω − K2

4m
− q2

m
+ iε

I solve this integral equation by diagonalizing V Ḡ
(2)
0 :

2

π

∫
dq′q′ 2V (q, q′)Ḡ

(2)
0 (K , q′, ω)φν(q′,K , ω) = ην(K , ω)φν(q,K , ω)

ην : Weinberg eigenvalues [Weinberg (1963)]



Contribution of non-condensed pairs to the density

I density from s.-p. Green’s function: n =
2

β

∑
~k,ωn

G(~k, ωn) (ωn =Matsubara frequency)

I BCS: G = G0 → n = nfree = 2
∑
~k

f (ξ~k) (for T ≥ Tc )

I NSR: truncate Dyson equation at 1st order in Σ:
Γ

=ΣG = G0 + G2
0 Σ → n = nfree + ncorr

ncorr = − ∂

∂µ

∫
K 2dK

2π2

∫
dω

π
g(ω) Im

∑
ν

log(1− ην(K , ω)) (g =Bose function)

I mean-field shift Uk = Σ(k, ξk) already
included in s.-p. energy ξk
[Zimmermann and Stolz (1985)]

Σ(k, iωn)→ Σ(k, iωn)− Uk

I approximate Uk by HF self-energy

I ncorr/n→ 0 at large n
but slightly cutoff dependent 0 10 20 30
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NSR critical temperature

I Thouless criterion: ην(K = 0, ω = 0) = 1 at T = Tc
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I Tc up to 30% lower than TBCS
c at low density

I Tc ≈ TBCS
c for n & 0.1 n0 (n0 = 0.17 fm−3)

I contact interaction is a good approximation only for n . 0.002 n0

I effects from m∗ and 3N force neglected [Hebeler and Schwenk (2010)]

I screening (particle-hole) effects?



Screening

I diagrams (analogous to screening of Coulomb interaction)
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(V = anti-
symmetrized
matrix
element)

I contact interaction at weak coupling (diagram (a) only):
repulsive exchange of spin fluctuations (S = 1) reduces Tc by ∼ 50%
[Gor’kov and Melik-Barkhudarov (1961)]

I away from weak-coupling limit: necessary to include RPA (diagram (b))

I previous work mostly uses drastic approximations:
V replaced with average matrix element to factorize loop integrals
[e.g., Cao, Lombardo, and Schuck, PRC 74, 064301 (2006)]



RPA effect on the S = 0 and S = 1 contributions

I diagram (a): S = 0 contribution attractive,
S = 1 repulsive and about 3× stronger than S = 0

I RPA in Landau approximation: (Π0 = Lindhard function)

V RPA
ph =

f0
1− f0Π0

+
g0

1− g0Π0
~σ1 · ~σ2

I generally f0 < 0, g0 > 0 (at least at low density)
(contact interaction: g0 = −f0)

I f0 < 0 → RPA enhances S = 0 contribution
g0 > 0 → RPA reduces S = 1 contribution

I RPA effect (diagram (b)) gets more important with
increasing density

I example: at kF = 0.8 fm−1, net result is attractive
→ antiscreening instead of screening!
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Critical temperature

I Vlow-k+ Landau parameters from SLy4:

I diagram (a) results in dramatic screening

I from kF ∼ 0.7 fm−1 (n ∼ 0.01 fm−3),
screening turns into antiscreening
→ Tc is increased, not reduced!

I repeat calculation with Gogny D1 and D1N:

I Tc depends on the choice of the interaction

I again, screening turns into antiscreening at
kF ≈ 0.7− 0.8 fm−1

I NSR effect not included here

I additional reduction of Tc from quasiparticle
residue (Z factor < 1)?
[Cao, Lombardo, and Schuck]
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Summary

I superfluid transition temperature Tc of dilute neutron matter relevant for
neutron stars (cooling, glitches)

I large theoretical uncertainties

I non-condensed pairs (NSR theory) reduce Tc at low density (. 0.01 fm−3)
by up to 30%

I screening corrections: single bubble exchange diagram insufficient

I RPA bubble exchange: calculation without the usual approximations
suggests that screening turns into antiscreening beyond 0.01− 0.02 fm−3

Outlook

I use screened interaction in NSR calculation

I reduction of Tc due to quasiparticle residue Z < 1

I derive Fermi-liquid parameters and pairing from one interaction:
in-medium similarity renormalization group (IMSRG) instead of Vlow-k


